Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Biosci (Landmark Ed) ; 26(5): 51-75, 2021 04 30.
Article in English | MEDLINE | ID: covidwho-1241385

ABSTRACT

In 2020, a novel strain of coronavirus (COVID-19) has led to a significant morbidity and mortality worldwide. As of the date of this writing, a total of 116 M cases has been diagnosed worldwide leading to 2.5 M deaths. The number of mortalities is directly correlated with the rise of innate immune cells (especially macrophages) in the lungs that secrete inflammatory cytokines (IL-1ß and IL-6) leading to the development of "Cytokine Storm Syndrome" (CSS), multi-organ-failure and death. Given that currently the treatment of this condition is rare and release of effective vaccine might be months away, here, we review the plants and their pharmacologically active-compounds as potential phytopharmaceuticals for the virus induced inflammatory response. Experimental validation of the effectiveness of these natural compounds to prevent or reduce the cytokine storm might be beneficial as an adjunct treatment of SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome/prevention & control , Phytotherapy/methods , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry , SARS-CoV-2/drug effects , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokines/immunology , Cytokines/metabolism , Humans , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Plants, Medicinal/classification , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Virulence/drug effects , Virulence/immunology
2.
Eur J Clin Microbiol Infect Dis ; 40(2): 373-379, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1033857

ABSTRACT

Quorum sensing (QS) inhibition is an essential strategy to combat bacterial infection. Previously, we have synthesized a series of thymidine derivatives bearing isoxazole and 1,2,3-triazole rings (TITL). Herein, the inhibitory effects of TITL on QS of Pseudomonas aeruginosa PAO1 were evaluated. In vitro results demonstrated that TITL effectively inhibited biofilm formation and reduced the virulence factors of P. aeruginosa PAO1. In combination with antibiotics, our TITL compounds significantly prolonged the lifespans of Caenorhabditis elegans N2 nematodes that were infected with P. aeruginosa PAO1 in vivo. In conclusion, TITL compounds are promising candidates for the treatment of antibiotic-resistant P. aeruginosa PAO1.


Subject(s)
Biofilms/drug effects , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Triazoles/pharmacology , Virulence/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Caenorhabditis elegans , Drug Resistance, Bacterial
3.
Food Chem Toxicol ; 149: 112007, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1139498

ABSTRACT

Consistent gathering of immunotoxic substances on earth is a serious global issue affecting people under pathogenic stress. Organophosphates are among such hazardous compounds that are ubiquitous in nature. They fuel oxidative stress to impair antiviral immune response in living entities. Aside, organophosphates promote cytokine burst and pyroptosis in broncho-alveolar chambers leading to severe respiratory ailments. At present, we witness COVID-19 outbreak caused by SARS-CoV-2. Infection triggers cytokine storm coupled with inflammatory manifestations and pulmonary disorders in patients. Since organophosphate-exposure promotes necroinflammation and respiratory troubles hence during current pandemic situation, additional exposure to such chemicals can exacerbate inflammatory outcome and pulmonary maladies in patients, or pre-exposure to organophosphates might turn-out to be a risk factor for compromised immunity. Fortunately, antioxidants alleviate organophosphate-induced immunosuppression and hence under co-exposure circumstances, dietary intake of antioxidants would be beneficial to boost immunity against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Environmental Exposure/adverse effects , Immunity/drug effects , Inflammation/etiology , Organophosphates/adverse effects , Oxidative Stress/drug effects , SARS-CoV-2/pathogenicity , Animals , Antioxidants/therapeutic use , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome , Cytokines/metabolism , Humans , Inflammation/metabolism , Inflammation/prevention & control , Pandemics , Pesticides/adverse effects , Pyroptosis , Respiratory Tract Diseases/etiology , Virulence/drug effects
4.
Microbiol Immunol ; 65(1): 10-16, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1066571

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Because complete elimination of SARS-CoV-2 appears difficult, decreasing the risk of transmission is important. Treatment with 0.1 and 0.05 ppm ozone gas for 10 and 20 hr, respectively, decreased SARS-CoV-2 infectivity by about 95%. The magnitude of the effect was dependent on humidity. Treatment with 1 and 2 mg/L ozone water for 10 s reduced SARS-CoV-2 infectivity by about 2 and 3 logs, respectively. Our results suggest that low-dose ozone, in the form of gas and water, is effective against SARS-CoV-2.


Subject(s)
COVID-19/transmission , Ozone/pharmacology , Virulence/drug effects , Humidity , SARS-CoV-2 , Water
5.
Curr Drug Targets ; 21(16): 1703-1721, 2020.
Article in English | MEDLINE | ID: covidwho-918038

ABSTRACT

The emergence of coronavirus disease 2019 (COVID-19) is caused by the 2019 novel coronavirus (2019-nCoV). The 2019-nCoV first broke out in Wuhan and subsequently spread worldwide owing to its extreme transmission efficiency. The fact that the COVID-19 cases and mortalities are reported globally and the WHO has declared this outbreak as the pandemic, the international health authorities have focused on rapid diagnosis and isolation of patients as well as search for therapies able to counter the disease severity. Due to the lack of known specific, effective and proven therapies as well as the situation of public-health emergency, drug repurposing appears to be the best armour to find a therapeutic solution against 2019-nCoV infection. Repurposing anti-malarial drugs and chloroquine (CQ)/ hydroxychloroquine (HCQ) have shown efficacy to inhibit most coronaviruses, including SARS-CoV-1 coronavirus. These CQ analogues have shown potential efficacy to inhibit 2019-nCoV in vitro that leads to focus several future clinical trials. This review discusses the possible effective roles and mechanisms of CQ analogues for interfering with the 2019-nCoV replication cycle and infection.


Subject(s)
Aminoquinolines/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/physiology , Aminoquinolines/pharmacology , Antiviral Agents/pharmacology , COVID-19/virology , Chloroquine/pharmacology , Chloroquine/therapeutic use , Clinical Trials as Topic , Drug Repositioning , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , SARS-CoV-2/drug effects , Treatment Outcome , Virulence/drug effects , Virus Replication/drug effects
6.
Hum Vaccin Immunother ; 16(12): 3055-3060, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-730557

ABSTRACT

Coronavirus disease-2019 (COVID-19) pandemic has become a global threat and death tolls are increasing worldwide. The SARS-CoV-2 though shares similarities with SARS-CoV and MERS-CoV, immunopathology of the novel virus is not understood properly. Previous reports from SARS and MERS-CoV documents that preexisting, non-neutralizing or poorly neutralizing antibodies developed as a result of vaccine or infection enhance subsequent infection, a phenomenon called as antibody-dependent enhancement (ADE). Since immunotherapy has been implicated for COVID-19 treatment and vaccine is under development, due consideration has to be provided on ADE to prevent untoward reactions. ADE mitigation strategies like the development of vaccine or immunotherapeutics targeting receptor binding motif can be designed to minimize ADE of SARS-CoV-2 since full-length protein-based approach can lead to ADE as reported in MERS-CoV. The present mini-review aims to address the phenomenon of ADE of SARS-CoV-2 through the lessons learned from SARS-CoV and MERS-CoV and ways to mitigate them so as to develop better vaccines and immunotherapeutics against SARS-CoV-2.


Subject(s)
Antibody-Dependent Enhancement/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Drug Development/trends , Immunotherapy/trends , SARS-CoV-2/immunology , Animals , Antibody-Dependent Enhancement/drug effects , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Drug Development/methods , Humans , Immunotherapy/methods , SARS-CoV-2/pathogenicity , Virulence/drug effects , Virulence/immunology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL